Generative models vs discriminative models

with No Comments

Let’s say you have input data x and you want to classify the data into labels y. A generative model learns the joint probability distribution p(x,y) and a discriminative model learns the conditionalprobability distribution p(y|x) – which you should read as “the probability of y given x.

Here’s a really simple example. Suppose you have the following data in the form (x,y):

(1,0), (1,0), (2,0), (2, 1)

p(x,y) is

      y=0   y=1
     -----------
x=1 | 1/2   0
x=2 | 1/4   1/4

p(y|x) is

      y=0   y=1
     -----------
x=1 | 1     0
x=2 | 1/2   1/2

The distribution p(y|x) is the natural distribution for classifying a given example x into a class y, which is why algorithms that model this directly are called discriminative algorithms. Generative algorithms model p(x,y), which can be transformed into p(y|x) by applying Bayes rule and then used for classification. However, the distribution p(x,y) can also be used for other purposes. For example, you could use p(x,y) to generate likely (x,y) pairs.

Leave a Reply